Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutathione transferases of Phanerochaete chrysosporium: S-glutathionyl-p-hydroquinone reductase belongs to a new structural class.

Identifieur interne : 000507 ( Main/Exploration ); précédent : 000506; suivant : 000508

Glutathione transferases of Phanerochaete chrysosporium: S-glutathionyl-p-hydroquinone reductase belongs to a new structural class.

Auteurs : Edgar Meux [France] ; Pascalita Prosper ; Andrew Ngadin ; Claude Didierjean ; Mélanie Morel ; Stéphane Dumarçay ; Tiphaine Lamant ; Jean-Pierre Jacquot ; Frédérique Favier ; Eric Gelhaye

Source :

RBID : pubmed:21177852

Descripteurs français

English descriptors

Abstract

The white rot fungus Phanerochaete chrysosporium, a saprophytic basidiomycete, possesses a large number of cytosolic glutathione transferases, eight of them showing similarity to the Omega class. PcGSTO1 (subclass I, the bacterial homologs of which were recently proposed, based on their enzymatic function, to constitute a new class of glutathione transferase named S-glutathionyl-(chloro)hydroquinone reductases) and PcGSTO3 (subclass II related to mammalian homologs) have been investigated in this study. Biochemical investigations demonstrate that both enzymes are able to catalyze deglutathionylation reactions thanks to the presence of a catalytic cysteinyl residue. This reaction leads to the formation of a disulfide bridge between the conserved cysteine and the removed glutathione from their substrate. The substrate specificity of each isoform differs. In particular PcGSTO1, in contrast to PcGSTO3, was found to catalyze deglutathionylation of S-glutathionyl-p-hydroquinone substrates. The three-dimensional structure of PcGSTO1 presented here confirms the hypothesis that it belongs not only to a new biological class but also to a new structural class that we propose to name GST xi. Indeed, it shows specific features, the most striking ones being a new dimerization mode and a catalytic site that is buried due to the presence of long loops and that contains the catalytic cysteine.

DOI: 10.1074/jbc.M110.194548
PubMed: 21177852
PubMed Central: PMC3059006


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutathione transferases of Phanerochaete chrysosporium: S-glutathionyl-p-hydroquinone reductase belongs to a new structural class.</title>
<author>
<name sortKey="Meux, Edgar" sort="Meux, Edgar" uniqKey="Meux E" first="Edgar" last="Meux">Edgar Meux</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR 1136 INRA-UHP Interactions Arbres/Micro-Organismes, IFR110 Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation, Nancy Université, Faculté des Sciences et Techniques, BP 70239, 54506 Vandoeuvre-les-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR 1136 INRA-UHP Interactions Arbres/Micro-Organismes, IFR110 Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation, Nancy Université, Faculté des Sciences et Techniques, BP 70239, 54506 Vandoeuvre-les-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
</placeName>
<orgName type="university">Nancy-Université</orgName>
</affiliation>
</author>
<author>
<name sortKey="Prosper, Pascalita" sort="Prosper, Pascalita" uniqKey="Prosper P" first="Pascalita" last="Prosper">Pascalita Prosper</name>
</author>
<author>
<name sortKey="Ngadin, Andrew" sort="Ngadin, Andrew" uniqKey="Ngadin A" first="Andrew" last="Ngadin">Andrew Ngadin</name>
</author>
<author>
<name sortKey="Didierjean, Claude" sort="Didierjean, Claude" uniqKey="Didierjean C" first="Claude" last="Didierjean">Claude Didierjean</name>
</author>
<author>
<name sortKey="Morel, Melanie" sort="Morel, Melanie" uniqKey="Morel M" first="Mélanie" last="Morel">Mélanie Morel</name>
</author>
<author>
<name sortKey="Dumarcay, Stephane" sort="Dumarcay, Stephane" uniqKey="Dumarcay S" first="Stéphane" last="Dumarçay">Stéphane Dumarçay</name>
</author>
<author>
<name sortKey="Lamant, Tiphaine" sort="Lamant, Tiphaine" uniqKey="Lamant T" first="Tiphaine" last="Lamant">Tiphaine Lamant</name>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
</author>
<author>
<name sortKey="Favier, Frederique" sort="Favier, Frederique" uniqKey="Favier F" first="Frédérique" last="Favier">Frédérique Favier</name>
</author>
<author>
<name sortKey="Gelhaye, Eric" sort="Gelhaye, Eric" uniqKey="Gelhaye E" first="Eric" last="Gelhaye">Eric Gelhaye</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21177852</idno>
<idno type="pmid">21177852</idno>
<idno type="doi">10.1074/jbc.M110.194548</idno>
<idno type="pmc">PMC3059006</idno>
<idno type="wicri:Area/Main/Corpus">000519</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000519</idno>
<idno type="wicri:Area/Main/Curation">000519</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000519</idno>
<idno type="wicri:Area/Main/Exploration">000519</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutathione transferases of Phanerochaete chrysosporium: S-glutathionyl-p-hydroquinone reductase belongs to a new structural class.</title>
<author>
<name sortKey="Meux, Edgar" sort="Meux, Edgar" uniqKey="Meux E" first="Edgar" last="Meux">Edgar Meux</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR 1136 INRA-UHP Interactions Arbres/Micro-Organismes, IFR110 Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation, Nancy Université, Faculté des Sciences et Techniques, BP 70239, 54506 Vandoeuvre-les-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR 1136 INRA-UHP Interactions Arbres/Micro-Organismes, IFR110 Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation, Nancy Université, Faculté des Sciences et Techniques, BP 70239, 54506 Vandoeuvre-les-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
</placeName>
<orgName type="university">Nancy-Université</orgName>
</affiliation>
</author>
<author>
<name sortKey="Prosper, Pascalita" sort="Prosper, Pascalita" uniqKey="Prosper P" first="Pascalita" last="Prosper">Pascalita Prosper</name>
</author>
<author>
<name sortKey="Ngadin, Andrew" sort="Ngadin, Andrew" uniqKey="Ngadin A" first="Andrew" last="Ngadin">Andrew Ngadin</name>
</author>
<author>
<name sortKey="Didierjean, Claude" sort="Didierjean, Claude" uniqKey="Didierjean C" first="Claude" last="Didierjean">Claude Didierjean</name>
</author>
<author>
<name sortKey="Morel, Melanie" sort="Morel, Melanie" uniqKey="Morel M" first="Mélanie" last="Morel">Mélanie Morel</name>
</author>
<author>
<name sortKey="Dumarcay, Stephane" sort="Dumarcay, Stephane" uniqKey="Dumarcay S" first="Stéphane" last="Dumarçay">Stéphane Dumarçay</name>
</author>
<author>
<name sortKey="Lamant, Tiphaine" sort="Lamant, Tiphaine" uniqKey="Lamant T" first="Tiphaine" last="Lamant">Tiphaine Lamant</name>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
</author>
<author>
<name sortKey="Favier, Frederique" sort="Favier, Frederique" uniqKey="Favier F" first="Frédérique" last="Favier">Frédérique Favier</name>
</author>
<author>
<name sortKey="Gelhaye, Eric" sort="Gelhaye, Eric" uniqKey="Gelhaye E" first="Eric" last="Gelhaye">Eric Gelhaye</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (enzymology)</term>
<term>Disulfides (chemistry)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (classification)</term>
<term>Glutathione Transferase (chemistry)</term>
<term>Glutathione Transferase (classification)</term>
<term>Protein Multimerization (MeSH)</term>
<term>Protein Structure, Quaternary (MeSH)</term>
<term>Protein Structure, Secondary (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basidiomycota (enzymologie)</term>
<term>Disulfures (composition chimique)</term>
<term>Glutathione transferase (classification)</term>
<term>Glutathione transferase (composition chimique)</term>
<term>Multimérisation de protéines (MeSH)</term>
<term>Protéines fongiques (classification)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Structure quaternaire des protéines (MeSH)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Disulfides</term>
<term>Fungal Proteins</term>
<term>Glutathione Transferase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Fungal Proteins</term>
<term>Glutathione Transferase</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Glutathione transferase</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Disulfures</term>
<term>Glutathione transferase</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Protein Multimerization</term>
<term>Protein Structure, Quaternary</term>
<term>Protein Structure, Secondary</term>
<term>Protein Structure, Tertiary</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Multimérisation de protéines</term>
<term>Spécificité du substrat</term>
<term>Structure quaternaire des protéines</term>
<term>Structure secondaire des protéines</term>
<term>Structure tertiaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The white rot fungus Phanerochaete chrysosporium, a saprophytic basidiomycete, possesses a large number of cytosolic glutathione transferases, eight of them showing similarity to the Omega class. PcGSTO1 (subclass I, the bacterial homologs of which were recently proposed, based on their enzymatic function, to constitute a new class of glutathione transferase named S-glutathionyl-(chloro)hydroquinone reductases) and PcGSTO3 (subclass II related to mammalian homologs) have been investigated in this study. Biochemical investigations demonstrate that both enzymes are able to catalyze deglutathionylation reactions thanks to the presence of a catalytic cysteinyl residue. This reaction leads to the formation of a disulfide bridge between the conserved cysteine and the removed glutathione from their substrate. The substrate specificity of each isoform differs. In particular PcGSTO1, in contrast to PcGSTO3, was found to catalyze deglutathionylation of S-glutathionyl-p-hydroquinone substrates. The three-dimensional structure of PcGSTO1 presented here confirms the hypothesis that it belongs not only to a new biological class but also to a new structural class that we propose to name GST xi. Indeed, it shows specific features, the most striking ones being a new dimerization mode and a catalytic site that is buried due to the presence of long loops and that contains the catalytic cysteine.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21177852</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>05</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>286</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2011</Year>
<Month>Mar</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutathione transferases of Phanerochaete chrysosporium: S-glutathionyl-p-hydroquinone reductase belongs to a new structural class.</ArticleTitle>
<Pagination>
<MedlinePgn>9162-73</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M110.194548</ELocationID>
<Abstract>
<AbstractText>The white rot fungus Phanerochaete chrysosporium, a saprophytic basidiomycete, possesses a large number of cytosolic glutathione transferases, eight of them showing similarity to the Omega class. PcGSTO1 (subclass I, the bacterial homologs of which were recently proposed, based on their enzymatic function, to constitute a new class of glutathione transferase named S-glutathionyl-(chloro)hydroquinone reductases) and PcGSTO3 (subclass II related to mammalian homologs) have been investigated in this study. Biochemical investigations demonstrate that both enzymes are able to catalyze deglutathionylation reactions thanks to the presence of a catalytic cysteinyl residue. This reaction leads to the formation of a disulfide bridge between the conserved cysteine and the removed glutathione from their substrate. The substrate specificity of each isoform differs. In particular PcGSTO1, in contrast to PcGSTO3, was found to catalyze deglutathionylation of S-glutathionyl-p-hydroquinone substrates. The three-dimensional structure of PcGSTO1 presented here confirms the hypothesis that it belongs not only to a new biological class but also to a new structural class that we propose to name GST xi. Indeed, it shows specific features, the most striking ones being a new dimerization mode and a catalytic site that is buried due to the presence of long loops and that contains the catalytic cysteine.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Meux</LastName>
<ForeName>Edgar</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>UMR 1136 INRA-UHP Interactions Arbres/Micro-Organismes, IFR110 Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation, Nancy Université, Faculté des Sciences et Techniques, BP 70239, 54506 Vandoeuvre-les-Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Prosper</LastName>
<ForeName>Pascalita</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ngadin</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Didierjean</LastName>
<ForeName>Claude</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Morel</LastName>
<ForeName>Mélanie</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dumarçay</LastName>
<ForeName>Stéphane</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lamant</LastName>
<ForeName>Tiphaine</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jacquot</LastName>
<ForeName>Jean-Pierre</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Favier</LastName>
<ForeName>Frédérique</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gelhaye</LastName>
<ForeName>Eric</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>3PPU</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>12</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.18</RegistryNumber>
<NameOfSubstance UI="D005982">Glutathione Transferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005982" MajorTopicYN="N">Glutathione Transferase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="Y">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020836" MajorTopicYN="N">Protein Structure, Quaternary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21177852</ArticleId>
<ArticleId IdType="pii">M110.194548</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M110.194548</ArticleId>
<ArticleId IdType="pmc">PMC3059006</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 1999 Apr 21;257(3):901-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10208882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2005;401:78-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Mar 28;45(12):3852-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16548513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2007 Mar;14(2):114-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17455821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2009 Dec;66(23):3711-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19662500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2002 Oct;58(Pt 10 Pt 2):1772-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12351820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 1971 May;14(5):402-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5117686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2008 Mar 1;374(1):25-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18028863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2001 Aug;14(8):1051-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11511179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 22;283(34):23062-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 1988;68(3-4):273-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3214888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Nov 5;324(1):387-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 11;275(32):24798-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10783391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2007 Jan;20(1):149-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17226937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2004 Jan 1;11(Pt 1):56-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14646134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Nov 19;35(46):14634-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8931562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9725-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19497881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Sep 11;387(1):103-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19576179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Dec 5;263(34):17981-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2848019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2008 Feb;22(2):343-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17901115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Apr 25;34(16):5317-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7727393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Aug;69(8):5015-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12902304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Mar;86(2):773-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20201136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Dec 7;32(48):12949-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8241147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15385674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1995 Aug;19(2):196-8, 200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8527135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1999 May;6(5):458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10331874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2008 Dec;190(23):7595-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18820023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3895-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):391-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18513221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2001 Nov;10(11):2176-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11604524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Jun 4;41(22):7008-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12033934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1963 May-Jun;2:537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14069543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2006 Sep;89(2-3):127-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2010 Jun 15;428(3):419-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2001 Jul 15;391(2):271-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11437359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W545-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Aug 27;291(4):913-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10452896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2002 May;58(Pt 5):805-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11976492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Sep 21;372(3):774-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Feb;114(2):165-171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11903963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2005;401:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2006 Sep 1;398(2):187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16709151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 3;284(14):9299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2005 Apr;61(Pt 4):449-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15805600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Sep 1;406(2):247-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17523921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Mar 18;362(6417):219-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8384699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2005 Dec;274(5):454-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16231151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 25;101(21):7862-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15148374</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Vandœuvre-lès-Nancy</li>
</settlement>
<orgName>
<li>Nancy-Université</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Didierjean, Claude" sort="Didierjean, Claude" uniqKey="Didierjean C" first="Claude" last="Didierjean">Claude Didierjean</name>
<name sortKey="Dumarcay, Stephane" sort="Dumarcay, Stephane" uniqKey="Dumarcay S" first="Stéphane" last="Dumarçay">Stéphane Dumarçay</name>
<name sortKey="Favier, Frederique" sort="Favier, Frederique" uniqKey="Favier F" first="Frédérique" last="Favier">Frédérique Favier</name>
<name sortKey="Gelhaye, Eric" sort="Gelhaye, Eric" uniqKey="Gelhaye E" first="Eric" last="Gelhaye">Eric Gelhaye</name>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
<name sortKey="Lamant, Tiphaine" sort="Lamant, Tiphaine" uniqKey="Lamant T" first="Tiphaine" last="Lamant">Tiphaine Lamant</name>
<name sortKey="Morel, Melanie" sort="Morel, Melanie" uniqKey="Morel M" first="Mélanie" last="Morel">Mélanie Morel</name>
<name sortKey="Ngadin, Andrew" sort="Ngadin, Andrew" uniqKey="Ngadin A" first="Andrew" last="Ngadin">Andrew Ngadin</name>
<name sortKey="Prosper, Pascalita" sort="Prosper, Pascalita" uniqKey="Prosper P" first="Pascalita" last="Prosper">Pascalita Prosper</name>
</noCountry>
<country name="France">
<region name="Grand Est">
<name sortKey="Meux, Edgar" sort="Meux, Edgar" uniqKey="Meux E" first="Edgar" last="Meux">Edgar Meux</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000507 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000507 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21177852
   |texte=   Glutathione transferases of Phanerochaete chrysosporium: S-glutathionyl-p-hydroquinone reductase belongs to a new structural class.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21177852" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020